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1 Introduction

Skin cancer is one of the most common malignan-
cies worldwide, and is becoming even more com-
mon over time (Karp et al., 2024). Malignant skin
cancers are more commonly known as melanomas,
and although this subtype makes up only about 1%
of all skin tumours, it accounts for the vast majority
of skin-cancer deaths. This means that early detec-
tion is critical, as the five-year survival is very high
when caught early (in the 90–99% range), but drops
sharply if diagnosis is delayed (Naqvi et al., 2023).
In Canada and the U.S., roughly one in five people
will develop some form of skin cancer by age 70.
This makes automated diagnostic tools appealing
for assisting dermatologists and patients.

In this project, we aim to build a machine-
learning image classification model to label lesions
as malignant or benign. By training on dermo-
scopic images, the model can capture subtle vi-
sual patterns and help flag suspicious lesions. We
do not expect perfect accuracy, as expert dermo-
scopic exams are only about 60% accurate in prac-
tice (Al-Waisy et al., 2025), but a high-performing
algorithm could make early screening significantly
faster and more widely accessible. Skin-cancer
classification is also inherently difficult due to high
visual similarity between lesion types and large
variability within each class (Wu et al., 2022).

Recent research has extensively applied deep
learning to skin-lesion classification. Convolu-
tional neural networks (CNNs) can learn rich visual
features directly from images, and many studies re-
port very high accuracy on standard datasets. For
example, Esteva et al. (2017) trained a CNN on
more than 100,000 clinical images and demon-
strated dermatologist-level performance on ma-
lignant vs. benign classification. Others have
fine-tuned pretrained models such as AlexNet,
VGG, ResNet, DenseNet, and NASNet on der-
moscopy datasets—including the one we use in

our project—and often achieved classification ac-
curacies above 95%. However, most dermatol-
ogy datasets remain small and highly imbalanced,
which limits robustness and real-world generaliza-
tion (Wu et al., 2022). One study found that a
DenseNet-121 feature extractor plus a neural classi-
fier reached approximately 98.3% accuracy (Naqvi
et al., 2023), and ensemble or attention-based ar-
chitectures such as “Skin-DeepNet” have pushed
reported accuracy even higher (Al-Waisy et al.,
2025).

Despite this progress, high performance on cu-
rated dermoscopic images does not guarantee re-
liability in uncontrolled settings. In practical de-
ployment, many users capture lesions with smart-
phone cameras rather than clinical dermatoscopes.
These images vary widely in focus, lighting, dis-
tance, and framing, producing a significant domain
shift that dermoscopy-trained models often fail
to handle. Clinical evidence shows that patient-
captured mobile-phone images are frequently of
insufficient quality for diagnosis, with inadequate
information in roughly one-third of cases (Weingast
et al., 2013). This highlights a key gap between
benchmark results and real-world usage.

Beyond binary malignant–benign classification,
more recent work has explored multi-modal sys-
tems that incorporate metadata such as patient age,
lesion location, and clinical history. For example,
Ahmadi Mehr and Ameri (2022) achieved approx-
imately 89.3% accuracy when jointly modeling
images and patient attributes to classify four com-
mon skin conditions. We build on this foundation
by developing our own CNN-based classifier with
the goal of achieving strong diagnostic accuracy
for binary lesion classification while following best
practices for transfer learning and model evalua-
tion.

After reviewing related work, particularly stud-
ies highlighting the performance gap between der-
moscopic datasets and real-world smartphone im-



ages, we refined our understanding of the domain-
shift challenges in skin-cancer classification. While
this did not change our core project direction, it
informed our expectations regarding model gener-
alization.

2 Dataset

The dataset we were originally using can be found
on Kaggle and consists of 3297 images of skin
lesions. Approximately half of these (1800) show
benign skin lesions, and the other half (1497) show
malignant skin lesions, which is annotated in the
dataset by splitting the images into two distinct
folders based on their classification.

These images were originally sourced from the
International Skin Imaging Collaboration (ISIC),
which provides an open archive of thousands of
images captured and hand-annotated by clinicians
all over the world. This means that the annotations
are based on diagnoses from trained healthcare
professionals, and thus we can expect them to be
accurate with a relatively high degree of certainty.

2.1 Dataset Changes
We switched to the 10,000-image ISIC dataset on
Kaggle to address limitations we saw when training
on the smaller set. This dataset consists of 5500
images of benign skin lesions and 5105 images
of malignant skin lesions. In our previous dataset
with fewer samples, the model tended to overfit
and showed weaker generalization on the valida-
tion split, or under fit if data augmentation was ap-
plied to address the overfitting. This larger dataset
provides a wider range of lesion appearances and
natural variation across patients, which supports
more stable learning and reduces the model’s de-
pendence on augmentation alone. Since the new
dataset follows the same ISIC format and class
structure, our pre-processing steps were mostly un-
changed, aside from a few extra augmentation steps
including perspective shifts and ImageNet auto-
augmenting. The existing normalization, cropping,
and augmentation pipeline still applies directly and
continues to serve the same purpose of improving
generalization. The main practical difference in-
troduced by the larger dataset is increased training
and data-loading time, but the overall workflow
remains unchanged.

2.2 Preprocessing
To prepare the images for the model, each image
is first normalized by the ImageNet mean and stan-

Figure 1: A malignant (left) and benign (right) lesion.

dard deviation, and resized to a standard resolution
of 300× 300 pixels to match the expected input of
the backbone model (see implementation details).
Additionally, for the images used in training the
model, we apply random crops, flips, rotations, per-
spective shifts, and color adjustments to simulate
variations in orientation, lighting, and framing that
may occur in real-world images. These augmenta-
tions help the model generalize better by prevent-
ing overfitting to specific spatial or color patterns
(Shorten and Khoshgoftaar, 2019). Random eras-
ing is also used as a regularization technique, forc-
ing the model to rely on broader contextual features
rather than any single localized region.

3 Features

Following prior work in deep learning-based skin
lesion analysis (Esteva et al., 2017; Naqvi et al.,
2023; Al-Waisy et al., 2025), our model relies on
a convolutional neural network (CNN) to learn vi-
sual features directly from raw dermoscopic im-
ages rather than through handcrafted feature ex-
traction. Each image of a skin lesion is sized to
300 × 300 pixels and normalized using the stan-
dard ImageNet mean and standard deviation so that
its pixel distribution aligns with the pretrained net-
work weights. We do not incorporate any additional
metadata (such as age, sex, or lesion location), so
all information used by the model comes from the
dermoscopic images themselves.

The feature extraction process is handled by
a EfficientNetB3 architecture pretrained on Ima-
geNet (ImageNet1K_V2), used here as a trans-
fer learning backbone. This network serves as
a hierarchical feature extractor: earlier convolu-
tional layers detect low-level visual cues such as
edges, colour gradients, and small texture vari-
ations, while deeper layers encode higher-level,
semantically rich patterns related to lesion struc-
ture, border irregularities, and shape asymme-
tries. These progressively abstracted representa-

https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign
https://www.isic-archive.com/
https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images
https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images


tions form a 2048-dimensional embedding vector
that summarizes each image in a compact feature
space. Using a pretrained backbone makes sense in
our setting because the dataset is relatively small;
transferring generic visual filters from ImageNet
reduces overfitting and has been repeatedly shown
to improve performance on medical images (Esteva
et al., 2017).

On top of this backbone, we replace the original
1000-class output layer of EfficientNetB3 with a
new two-unit linear head corresponding to benign
and malignant classes. This classifier operates on
the 2048-dimensional embeddings produced by the
backbone and maps them to softmax probabilities
for binary prediction. During training, the model
jointly optimizes these representations so that em-
beddings of malignant and benign samples become
separable in feature space. In doing so, the system
learns the relevant visual characteristics for diag-
nosis directly from data, rather than depending on
predefined colour or texture descriptors.

We do not perform any explicit feature selection:
all channels in the dermoscopic images are kept,
and the full 2048-dimensional embedding from the
backbone is passed to the classifier without man-
ual pruning. Instead of dropping or hand-picking
features, we rely on the network’s internal repre-
sentation learning and regularization to suppress
uninformative patterns.

However, we do change the effective input dis-
tribution through data augmentation. For training
images, we apply random crops, horizontal flips, ro-
tations, colour jitter, perspective shifts, and random
erasing as part of the preprocessing pipeline. These
augmentations were added because they simulate
realistic variation in orientation, lighting, framing,
and partial occlusion, which should encourage the
model to focus on lesion shape and structure rather
than memorizing specific pixel arrangements.

In terms of varying features across experiments,
our main comparison was between using the
ImageNet-pretrained EfficientNetB3 as a frozen
feature extractor with only the final linear layer
trained, versus fine-tuning the entire backbone end-
to-end. The frozen variant relies on generic natural-
image features, while fine-tuning adapts the repre-
sentation to dermoscopic patterns observed in our
dataset.

4 Implementation

As described in the Features section, the final
model is built on an EfficientNet-B3 convolutional
backbone, which provides a favourable balance be-
tween representational capacity and computational
efficiency. The implementation adapts this pre-
trained architecture to the binary task of benign vs
malignant skin lesion classification and integrates it
into a training pipeline. All components are imple-
mented in PyTorch, which enables modular design,
scalable experimentation, and flexible optimiza-
tion.

The network is initialized with ImageNet-
pretrained weights (ImageNet1K) to leverage gen-
eralized visual features such as colour gradients,
texture patterns, and edge structures learned from
large-scale natural image data. To specialize the
model for skin lesion classification, the original
classification head is replaced with a new fully con-
nected layer that outputs two logits corresponding
to the target classes. This layer maps the 1536-
dimensional pooled feature vector from the Effi-
cientNet backbone to the final binary prediction.
Only this new layer is randomly initialized. All re-
maining parameters retain their pretrained weights.

In order to achieve stable convergence, train-
ing is organized into two distinct stages. During
the initial warmup phase (3 epochs), the back-
bone is frozen, and only the classification head
is trained. This allows the new head to learn class-
specific decision boundaries without affecting the
pretrained feature representations. The optimizer
used is AdamW, with a learning rate of 5× 10−4

for the head and a weight decay of 5× 10−5.
After warmup, the model enters the fine-tuning

stage, in which the entire network is unfrozen and
trained end-to-end for up to 50 epochs, with early
stopping applied if validation performance fails to
improve by at least 1× 10−4 over five consecutive
epochs. In practice, training typically converges
after approximately 30 epochs, though this does
vary. A differential learning rate strategy is used,
applying a lower rate (1× 10−4) to the pretrained
backbone while maintaining 5× 10−4 for the clas-
sification head. A cosine annealing learning rate
scheduler gradually reduces the learning rate across
epochs, improving generalization and preventing
overfitting.

The model is trained using the cross-entropy loss
function with a batch size of 256. Automatic mixed-
precision (AMP) is enabled on GPU to accelerate



training and reduce memory usage. Each epoch
consists of forward propagation, loss computation,
backpropagation, and parameter updates, followed
by validation to track performance. To ensure re-
producibility, random seeds are fixed, and model
checkpoints are saved whenever validation metrics
improve.

Data loading and preprocessing are handled us-
ing PyTorch’s ImageFolder and DataLoader APIs.
Separate loaders are defined for training, validation,
and test splits. Training images go through exten-
sive on-the-fly augmentation through torchvision
transforms, including random cropping, flipping,
rotation, color jitter, random erasing, perspective
distortion, simulated lighting variation, and Ima-
geNet AutoAugment policies. These augmenta-
tions are used to improve robustness by simulating
real-world variability and preventing overfitting.
Validation and test images are processed with de-
terministic resizing and center cropping to ensure
consistent and unbiased evaluation.

After training concludes, the model’s output
probabilities are post-processed using threshold
tuning. Rather than applying a fixed threshold of
0.5, the decision threshold is selected to maximize
validation-set performance, optimizing either ac-
curacy or F1-score depending on the evaluation
target. This final calibration step improves classi-
fication reliability, particularly in the presence of
class imbalance and probabilistic uncertainty.

The implementation follows a modular and ex-
tensible design. Separate modules manage data
handling, model definition, optimization, evalua-
tion, and checkpointing. This architecture makes it
straightforward to substitute alternative backbones,
adjust hyperparameters, or introduce new training
strategies without modifying the core pipeline. All
experimental outputs, including trained weights,
logs, and configuration files are stored in a check-
points directory to ensure traceability and repro-
ducibility.

5 Results and Evaluation

To evaluate our model’s performance in distinguish-
ing malignant vs. benign skin lesions, we used a
structured two-phase training process with separate
warm-up and fine-tuning stages. During the warm-
up phase, only the classifier head was trained on
frozen ImageNet-pretrained backbones (Efficient-
NetB3), ensuring that the model adapted its higher-
level features to the new dataset while avoiding

overfitting. The fine-tuning phase then unfroze the
backbone for end-to-end optimization at a lower
learning rate, improving representational alignment
with the medical domain.

Figure 2: Validation performance through epochs.

The primary metric for model selection was the
ROC-AUC (Receiver Operating Characteristic -
Area Under Curve), which measures the model’s
ability to distinguish between malignant and benign
samples regardless of threshold. In addition to that,
some performance indicators (see Figure 2) include
Precision, Recall, F1-score, PR-AUC (Precision-
Recall AUC), and Accuracy, along with a confu-
sion matrix for class-wise inspection (see Figure 4).
All these metrics were computed using scikit-learn
functions.

As a baseline, we compared against a non-
finetuned ImageNet model, which achieves near-
random classification performance (ROC-AUC ≈
0.5) when directly applied to the dataset. After
warm-up and fine-tuning, our model showed a sig-
nificantly higher ability to distinguish between the
two classes, as observed by validation ROC-AUC
values reaching 0.985 during training (see Fig-
ure 2). The consistent upward trend in both ROC-
AUC and PR-AUC across epochs indicated stable
learning and generalization improvements. Using
these results, the best-performing checkpoint (high-
est validation ROC-AUC) was saved for later de-
ployment and testing.

Ultimately, we obtained a model that achieved
an accuracy of 97.15% on the training set, 95.49%
accuracy on the validation set (see Figure 3), and
93.30% accuracy on the test set (see Figure 4).
These evaluation results demonstrate that trans-
fer learning, even with limited labeled dermato-
logical data, can achieve high diagnostic accu-
racy when paired with careful data augmentation,
validation-based early selection, and multi-metric



Figure 3: Training/validation accuracy through epochs.

performance tracking.

Figure 4: Confusion matrix after training.

6 Progress

The development of the final model mostly fol-
lowed the plan outlined in the progress report, with
several planned improvements successfully imple-
mented and additional refinements introduced dur-
ing experimentation. The objectives post-progress
report focused on improving generalization through
data augmentation, increasing training efficiency
through architectural changes, and adding early
stopping to reduce overfitting and unnecessary com-
putation.

All major planned changes were completed.
Data augmentation was substantially expanded
beyond basic transformations to include domain-
specific variations, improving the robustness of the
model to real-world image conditions. Weighted
sampling was applied to the dataset to ensure class
imbalances (however minimal they may be) are

counteracted. The backbone architecture was suc-
cessfully upgraded from ResNet-50 to EfficientNet-
B3, as originally proposed, enhancing efficiency
and representational power without sacrificing per-
formance. Early stopping was also implemented
as planned, enabling training to terminate auto-
matically once validation performance plateaued,
which reduced training time and mitigated over-
fitting. And the entire process was made easier
thanks to a fully refactored code base in a Jupyter
notebook, replacing the original python file and
allowing us to iterate without re-running the entire
process every time.

While the majority of the original plan was fol-
lowed, some components evolved during the course
of development. Fine-tuning was extended from
the originally planned schedule to a longer training
regime supported by stronger regularization and
early stopping. In addition, decision threshold opti-
mization was introduced after training to improve
final classification performance, particularly with
respect to accuracy and F1-score. This calibration
step was not part of the initial plan but was added
after observing that probability outputs could be
further optimized beyond a fixed threshold.

Overall, the project remained aligned with its
original design goals while evolving through ex-
perimental findings and performance evaluation.
These changes reflect an iterative development pro-
cess, resulting in a final model that is more ro-
bust, efficient, and clinically relevant than origi-
nally planned.

7 Error Analysis

To examine our model’s errors systematically, we
tracked threshold-independent metrics during train-
ing (ROC-AUC and PR-AUC) alongside threshold-
dependent metrics (accuracy, precision, recall, and
F1) and visual diagnostics. Epoch-by-epoch plots
of these metrics (see Figure 2) allowed us to dis-
tinguish score quality from classification calibra-
tion. ROC-AUC/PR-AUC indicated how well the
model separates benign vs malignant cases across
thresholds, while accuracy/F1 reflected our spe-
cific operating point (initially at 0.5, later tuned on
validation). We complemented these with confu-
sion matrices on the test set (see Figure 4), which
made false positives and false negatives visible at a
glance. Precision–recall and ROC curves (see Fig-
ure 5) help us to further understand performance un-
der class imbalance, showing how recall improves



as the threshold drops while precision degrades.

Figure 5: ROC and Precision-Recall curves.

By examining the samples that our model fails
to classify correctly (e.g. by looking at those in
the false positive and false negative regions of the
confusion matrix), we were able to develop a bet-
ter understanding of what cases our model does
not handle well. Misclassified benign images of-
ten exhibited atypical texture, lighting, or lesions
resembling malignant patterns, while malignant
misses tended to be small, low-contrast lesions
or cases with occlusion and challenging illumina-
tion. Improving our models handling of these cases
while preserving its performance on already correct
cases proved challenging to balance. For example,
weighted sampling slightly improved the recall for
malignant cases but sometimes increased false pos-
itives in benign, reflected by the confusion matrices
shifting off-diagonal.

Overall, the model appears good at clear, well-lit
lesions with consistent backgrounds. It is weaker
on borderline cases or photographs with poor qual-
ity (strong shadows, low contrast, occlusions, or
unusual artifacts). If we were to continue to work
on this model, we would try to address these issues
by further tuning our data augmentation to improve
generalization while keeping accuracy high, and
by experimenting with techniques like supervised
attention in order to address cases where lesions
are smaller or low-contrast. We may also try incor-
porating additional metadata such as patient age,
gender, race, and existing conditions in order to
reduce that impact of image quality issues or irreg-
ularities. This would be relatively easy to obtain,
as most skin lesion datasets already include this
additional metadata. In general, we would con-
tinue to focus on examining which cases our model
can and cannot handle and adjust our architecture
accordingly with further experimentation and com-
parison.

8 Team Contributions

8.1 Progress Report

Model implementation and training were con-
ducted collaboratively by Andre Menezes and Tony
Lin. The dataset was prepared/sourced by William
Clubine, who also evaluated the final trained model.
We divided the progress report based on these re-
sponsibilities, with Andre Menezes writing Results
and Evaluation and Feedback and Plans, Tony Lin
writing Features and Implementation, and William
Clubine writing Introduction, Related Work, and
Dataset. All members worked together to review
each other’s work and prepare the final submission.

8.2 Final Report

Andre Menezes modified Evaluation and Progress.
Tony Lin generated the Jupyter notebook and
modified the following sections: Introduction,
Dataset, Features and Inputs, and Team Contri-
butions. William Clubine refactored, upgraded,
and fine tuned the model architecture based on the
Progress Report’s Feedback and Plans and mod-
ified the Implementation and Error Analysis sec-
tions. All members worked together to review each
other’s work and prepare the final submission.
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